Enthalpy

Sample Problems:

1. Given the equation $3 \text{O}_2(g) \rightarrow 2 \text{O}_3(g) \, \Delta H = +285.4 \text{ kJ}$, calculate ΔH for the following reaction. $\frac{3}{2} \text{O}_2(g) \rightarrow \text{O}_3(g)$.

Answer
Since $\frac{3}{2} \text{O}_2(g) \rightarrow \text{O}_3(g)$ is $\frac{1}{2}$ of $3 \text{O}_2(g) \rightarrow 2 \text{O}_3(g)$ the enthalpy of the reaction will be $\frac{1}{2}$ as well: $\frac{1}{2} (+285.4 \text{kJ}) = +142.7 \text{kJ}$

2. Given the equation: $2 \text{Ag}_2\text{S(s)} + 2\text{H}_2\text{O(l)} \rightarrow 4\text{Ag(s)} + 2\text{H}_2\text{S(g)} + \text{O}_2(g) \, \Delta H = +595.5 \text{kJ}$, calculate ΔH for the following reaction.
$\text{Ag(s)} + \frac{1}{2} \text{H}_2\text{S(g)} + \frac{1}{4} \text{O}_2(g) \rightarrow \frac{1}{2} \text{Ag}_2\text{S(s)} + \frac{1}{2} \text{H}_2\text{O(l)}$

Answer
In this problem, the reaction equation has been reversed and divided by four. The new enthalpy value will be the opposite sign and $\frac{1}{4}$ its original value: $-\frac{1}{4}(+595.5 \text{kJ})$
$= -148.9 \text{kJ}$

3. Express the following information as a chemical equation. At 25°C and at a constant pressure, dinitrogen trioxide gas decomposes to nitrogen monoxide and nitrogen dioxide gases with the absorption of 0.533kJ of heat for every gram of dinitrogen trioxide that decomposes.
4. What is the enthalpy change when 12.8g H\(_2\) reacts with excess Cl\(_2\) to form HCl\(_g\)?

\[
\text{H}_2(g) + \text{Cl}_2(g) \rightarrow 2\text{HCl}(g) \quad \Delta H = -184.6 \text{kJ}
\]

Answer
12.8g H\(_2\) / 2.016g/mol = 6.35mol H\(_2\)
6.35mol H\(_2\) (-184.6kJ/mol H\(_2\)) = \(-1.17 \times 10^3\)kJ

5. What volume of CH\(_4\)\(_g\), measured at 25°C and 745Torr, must be burned in excess oxygen to release 1.00x10\(^6\)kJ of heat to the surroundings?

\[
\text{CH}_4(g) + 2\text{O}_2(g) \rightarrow \text{CO}_2(g) + 2\text{H}_2\text{O}(l) \quad \Delta H = -890.3 \text{kJ}
\]

Answer
There is 890.3kJ given off for every mole of CH\(_4\) burned, therefore the moles of CH\(_4\) needed are \(1.00 \times 10^6\)kJ/(890.3kJ/mol) = 1123mol CH\(_4\)

\[
V = \frac{nRT}{P} = \frac{(1123\,\text{mol})(.0821)(25^\circ\text{C} + 273.15)/(745/760)} = 2.80 \times 10^4 \text{L CH}_4
\]

Calorimetry

1. Calculate the heat capacity of a sample of brake fluid if the sample must absorb 911J of heat for its temperature to rise from 15°C to 100°C.

Answer
\[
C = \frac{q}{\Delta T} = \frac{911}{100-15} = 10.7 \text{J/}^\circ\text{C}
\]
2. A burner on an electric range has a heat capacity of 345J/K. What is the value of \(q \), in kilojoules, as the burner cools from a temperature of 467\(^\circ\)C to a room temperature of 23\(^\circ\)C?

Answer
\[
q = C \Delta T = (345 \text{J/K})(23-467) = -1.53 \times 10^5 \text{J} = -153 \text{kJ}
\]

Molar Heat Capacity/Specific Heat

1. How much heat, in calories and kilocalories, does it take to raise the temperature of 814g of water from 18.0\(^\circ\)C to 100\(^\circ\)C?

Answer
\[
q = mc \Delta T = (814 \text{g})(1 \text{cal/g}^\circ\text{C})(100^\circ\text{C} - 18^\circ\text{C}) = 6.67 \times 10^4 \text{cal} = 66.7 \text{Cal (kcal)}
\]

2. What mass of water, in kilograms, can be heated from 5.5\(^\circ\)C to 55.0\(^\circ\)C by 9.09 \times 10^{10} \text{J} of heat?

Answer
\[
m = \frac{q}{c \Delta T} = \frac{9.09 \times 10^{10} \text{J}}{(4.180 \text{J/g}^\circ\text{C})(55.0^\circ\text{C} - 5.5^\circ\text{C})} = 4.39 \times 10^8 \text{g} = 4.39 \times 10^5 \text{kg}
\]

3. A 454g block of lead is at an initial temperature of 22.5\(^\circ\)C. What will be the temperature of the lead after it absorbs 4.22kJ of heat from its surroundings?

Answer
\[
\Delta T = \frac{q}{mc} = \frac{4.22 \times 10^3 \text{J}}{(454 \text{g})(0.128 \text{J/g}^\circ\text{C})} = 72.6^\circ\text{C}
\]
Since heat is absorbed the temperature will go up
The final temperature is 22.5\(^\circ\)C + 72.6\(^\circ\)C = 95.1\(^\circ\)C
4. How many grams of copper can be heated from 22.5°C to 35.0°C by the same quantity of heat that can raise the temperature of 145g of H₂O from 22.5°C to 35.0°C?

Answer

\[(145g)(4.180\text{J/g°C}) = m(0.385\text{J/g°C})\]

1574.3g

1.57kg

Bomb Calorimetry

1. A 0.8082g sample of glucose (C₆H₁₂O₆) is burned in a bomb calorimeter assembly, and the temperature is noted to rise from 25.11°C to 27.21°C. Determine the heat capacity of the bomb calorimeter assembly, given:

\[
\text{C}_6\text{H}_{12}\text{O}_6(s) + 6\text{O}_2(g) \rightarrow 6\text{CO}_2(g) + 6\text{H}_2\text{O}(l)
\]

\[\Delta H = -2803\text{kJ}\]

Answer

moles of glucose = \[0.8082\text{g} / 180.2\text{g/mol} = 0.00449\text{mol}\]

\[q = -2803\text{kJ/mol} \times (0.00449\text{mol}) = -12.59\text{kJ}\]

\[C = q/\Delta T = 12.59\text{kJ}/2.10\text{°C} = 6.00\text{kJ/°C}\]

Hess’s Law of Heat Summation

1. Calculate the enthalpy change for the reaction

\[
\text{C}_2\text{H}_4(g) + \text{H}_2(g) \rightarrow \text{C}_2\text{H}_6(g) \quad \Delta H = ?
\]

Given:

\[
\text{C}_2\text{H}_4(g) + 3\text{O}_2(g) \rightarrow 2\text{CO}_2(g) + 2\text{H}_2\text{O}(l)
\]

\[\Delta H = -1410.9\text{kJ}\]

\[2\text{C}_2\text{H}_6(g) + 7\text{O}_2(g) \rightarrow 4\text{CO}_2(g) + 6\text{H}_2\text{O}(l)
\]

\[\Delta H = -3119.4\text{kJ}\]

\[2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(l)
\]

\[\Delta H = -571.6\text{kJ}\]
Answer:

\[\text{C}_2\text{H}_4(\text{g}) + 3\text{O}_2(\text{g}) \rightarrow 2\text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l}) \]

\((4\text{CO}_2(\text{g}) + 6\text{H}_2\text{O}(\text{l}) \rightarrow 2\text{C}_2\text{H}_6(\text{g}) + 7\text{O}_2(\text{g})) / 2 \) (flip equation and divide by 2)

\((2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2\text{H}_2\text{O}(\text{l})) / 2 \) (divide by 2)

\[\text{C}_2\text{H}_4(\text{g}) + 3\text{O}_2(\text{g}) \rightarrow 2\text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l}) \quad \Delta H = -1410.9\text{kJ} \]

\[2\text{CO}_2(\text{g}) + 3\text{H}_2\text{O}(\text{l}) \rightarrow \text{C}_2\text{H}_6(\text{g}) + 7/2 \text{O}_2(\text{g}) \] \(\Delta H = 1559.7\text{kJ} \)

\[\text{H}_2(\text{g}) + \frac{1}{2} \text{O}_2(\text{g}) \rightarrow \text{H}_2\text{O}(\text{l}) \] \(\Delta H = -285.8\text{kJ} \)

Resulting Equation:

\[\text{C}_2\text{H}_4(\text{g}) + \text{H}_2(\text{g}) \rightarrow \text{C}_2\text{H}_6(\text{g}) \quad \Delta H = -137.0\text{kJ} \]

Standard Enthalpy of Formation

1. Use data from table 6.2 (p257) to calculate \(\Delta H^\circ \) for the combustion of butane gas, \(\text{C}_4\text{H}_{10} \), to produce gaseous carbon dioxide and liquid water.

Answer:

\[2\text{C}_4\text{H}_{10}(\text{g}) + 13\text{O}_2(\text{g}) \rightarrow 8\text{CO}_2(\text{g}) + 10\text{H}_2\text{O}(\text{l}) \]

Using

\[\Delta H^\circ = \Sigma v_p \times \Delta H^\circ_{\text{f(products)}} - \Sigma v_r \times \Delta H^\circ_{\text{f(reactants)}} \]

\[[10(-285.8\text{kJ/mol}) + 8(-393.5\text{kJ/mol})] – [2(-125.7\text{kJ/mol}) + 13(0\text{kJ/mol})] \]

\(-6006.0 – (-251.4) = \textbf{-5754.6kJ} \)

2. The combustion of thiophene, \(\text{C}_4\text{H}_4\text{S}(\text{l}) \), a compound used in the manufacture of pharmaceuticals, produces carbon dioxide and sulfur dioxide gases and liquid water. The enthalpy change in the combustion of one mole of \(\text{C}_4\text{H}_4\text{S}(\text{l}) \) is -2523kJ. Use this information and date from Table 6.2 to establish \(\Delta H^\circ_{\text{f}} \) for \(\text{C}_4\text{H}_4\text{S}(\text{l}) \).
Answer:

\[
\text{C}_4\text{H}_4\text{S}(_l) + 6\text{O}_2(_g) \rightarrow 4\text{CO}_2(_g) + \text{SO}_2(_g) + 2\text{H}_2\text{O}(_l) \quad \Delta H = -2523 \text{kJ}
\]

\[4(-393.5) + 1(-296.8) + 2(-285.8)] - [1(\Delta H) + 6(0)] = -2523

\[-2442.4 - \Delta H = -2523\]

\[\Delta H = 80.6 \text{kJ/mol}\]

Ionic Reactions in Solution

Given that \(\Delta H^\circ [\text{Mg(OH)}_2(_s)] = -924.5 \text{kJ/mol, what is the standard enthalpy change, } \Delta H^\circ,\)

for the reaction of aqueous solutions of magnesium chloride and potassium hydroxide? (Use table 6.3, p 261)

Answer:

\[
\text{MgCl}_2(_{aq}) + 2\text{KOH}(_{aq}) \rightarrow \text{Mg(OH)}_2(_s) + 2\text{KCl}(_{aq})
\]

\[
\text{Mg}^{2+}(_{aq}) + 2\text{OH}^-(_{aq}) \rightarrow \text{Mg(OH)}_2(_s)
\]

\[1(-924.5 \text{kJ})] - [1(-466.9 \text{kJ}) + 2(-230.0 \text{kJ})]

\[\Delta H^\circ = 2.4 \text{kJ per mole of } \text{Mg(OH)}_2(_s) \text{ formed}\]